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ABSTRACT.

The effect of the J = 2, T = 0 T-ilinteraction on the iT-N invariant

amplitude B(+ ) is analysed. It is found that the IT-N scattering data is
0

inconsistent with a J = 2, T = O W-i phase, S , which rises to above

130 around 650 MeV. The data is consistent with a - function contribution

at 1200 MeV but it is impossible to say whether this corresponds to a resonant

phase or only a sharp peak in the corresponding absorptive part of the amplitude.



INTRODUCTION

In the 'TrTN + N channel of the pion-nucleon system only states with

isospin T = 0 and angular momentum J > 2 contribute to the pion-nucleon

total invariant amplitude B Since this amplitude affords a means of

investigating the J = 2, T = O f-Winteraction without interference from the J = 0,

T = 0 state it is of interest to consider possible methods of studying B

The IT- N total invariant amplitudes, A() and B () have been

studied at fixed angles in both the forward and backward directions (1), (2)

since no difficulties due to divergences of Legendre series are encountered

in these cases. It is necessary, however, to approximate unitarity by

retaining only a small number of terms in the partial wave expansions of the

amplitudes. The resulting errors may be considerable if the convergence of

these series is slow, as is to be expected if there are appreciable low energy

iT-l effects. Accordingly it is of interest to consider the amplitudes formed

by integrating the total amplitudes over all physical angles. These amplitudes

have distant singularities which cannot be calculated in terms of convergent

Legendre series but have the advantage that the contributions of alternate terms

of the partial wave expansion are much reduced in the low energy physical region.

Thus it is possible to calculate nearby singularities more accurately than in

the fixed angle case at the expense of introducing distant singularities which

must be represented by some approximation scheme.

Hence a dispersicn relation is written for the amplitude formed by

integrating B (+ ) over all angles and the results are analysed by methods similar

to those which have been successfully applied to the analysis of IT-N partial

(1) J. Hamilton and W. S. Woolcock, U. C. L. Physics Dept. preprint 1962.

This paper gives a detailed review of iT- N dispersion relations in the

forward direction.

(2) D. Atkinson, Phys. Rev. 128, 1908 (1962).
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waves so as to give values for 02, the J = 2, T = OIT-1rphase. The

dispersion relation is described in Sec. 2; the contribution from the Tfr#lT-N -N

channel and its relation to the J = 2, T = 0 iTir- interaction are considered

in Sec. 3, and the analysis of the results in terms of the phase is

discussed in Sec. 4.

2. The Discrepancy.

(i) Kinematics

The notation follows the standard usage. The total amplitude

with isospin T is given by

tri tr)BCS))) + (SX)

(W-M)+ (1)

where ) and f t )are expressable in terms of partial wave expansions

l ) z I t+ (5) ( ) Z & (2)

Lao

( P) () (X/

Here M is the mass of the nucleon, 1 L is the mass of the pion, W= s, where

s is the square of the total energy in the centre of momentum system and
CrT)

x is the cosine of the scattering angle in the same system. I are the

u1,oL p,.Itil wave,. oait,,es o,,nA 4 Ch, Jos . Jenot., Jjf,eflatle,, w,,

(3) J. Hamilton, P. Menotti, G. C. Oades and L. L. J. Vick, Phys. Rev. 128

1881 (1962).
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respect to x. It is also convenient to introduce the other Mandelstram

variables t and uthe squares of the total energies in the other two channels.

In the following the units are chosen so that t =L c = 1

The amplitude B W ) , defined by

W +a

3 3 (4)

is used to form the amplitude B o

+1

(5)

Substituting (1) into (5) leads to the partial wave expansion

7o1)- (wf.- -,
BO LSD w ( L*--' f t+)

ev, L .JJL (6)

(4.) l(

where Lare defined in terms of %t by a relation similar to (4). It

will be seen that the even t terms are damped by a factor 0 ('/M1 ) in the

low energy region compared to the odd L terms thus leading to the better

convergence noted in Sec. 1.

(ii) The Dispersion Relation.

The singularities of the function B (+ ) (s, t) are given by its double

spectral representation,

(st S M) a s' t' (i, s. t"M2.f ",. - -s I '-

is . , p ('= z ,, ,., p(t,,,%,) (7)
% , ..- S')(0,- 0 W(04 + 1) (t -t ) ('- - )
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G. being the rationalised pseudoscalar coupling constant,

The singularities of B o (s) are determined in an analogous fashion

to those of the partial wave amplitudes (4 ). They are of the same form apart

from the fact that there is no irrationality cut; they are shown in Fig. 1.

Thus a dispersion relation for B o (s) can be written in the form

(s) = j s') I Gs .s
W0

(8)
where either the first or the second integral is to be evaluated as a principal

value integral according to whether s 4 -' M . or 0 $ (i-) S . Here

G (s), given by

'( $ C-T - '
5 S - , "M " (9)

represents the contribution of the direct Born term and of the long range

crossed Born term. The discrepancy 4(s), contains the contributions from

the circular cut, IS , and the left hand cut - 0 $ 0C .

(iii) High Energy Behaviour.

In writing (8) in this form it has been assumed that no subotractions

are needed. The behaviour of B o (s) for large s can be studied in the

approximation of a finite range interaction. If the range of interaction is

R, scattering is expected to become negligible for L .# Rq, where q is the

momentum in the centre of momentum system. Then from (6),

M- ( ,0.)
to 2 t. 0) (f L +
sIor S LzO (10)

(4) J. Hamilton and T, D. Spearman. Ann. Phys. 12, 172 (1961).
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Also since unitarity ensures that

an upper bound is obtained for B o (s) of the form

IB(sj < .___ '6 S1(-1.)

Even if, as has been suggested by Regge pole theories, R increases logarithmically

with energy (11), together with a theorem by Sugawara and Karazawa (5) are

sufficient to ensure that (8) is well defined without having to introduce a

subtraction.

In the case of the series for Im B o (s) since the contribution from
Imf4) and since Im f,,'>

each value of L is of the form (-1) (Im fL - m a i

the high energy value of Im B o (s) is strongly dependent on forces of the

spin-orbit type and it is very probable that it falls off more quickly than

suggested by (11). It is assumed in the calculations that

0%
(12)

above 2 BeV.

(iv) Evaluation of the Discrepancy.

In (8) it is possible to calculate all terms, apart from the discrepancy,

using physical pion-nucleon data. In this way values are calculated for A s)

(5) M. Sugawara and A. Kanazawa, Phys. Rev. 123, 1895 (1962).
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in the ranges22 W S W 32.7 and 59.6 s• 80. These are shown in Fig. 2;

the separate contributions are described below.

(a) Rt B 0 (s). In the range 59. 6 W $ 4 80, Re B(o (s) is evaluated

in terms of Woolcock's s, p and d partial waves (6) values being needed for

energies up to about 215 MeV. In order to evaluate Re B o (s) in the region

S E (M-I)2 , use is made of the crossing relation

( st) = - B (wt) (13)

where u is related to s and t by

= 2M2  + 2 - s - t (14)

together with (5),the definition of B(0)(s). For s in the range 0N S 49 (M-I)2

values of B(+  (4, t ) are only required for physical energies and angles (7 ).

In calculating Re B(0)(s) for 22 I S - 32.7, Re B (U.,t) is evaluated

in terms of the s, p and d partial waves, values being needed for energies

up to 400 MeV, and Re B(o)(s) is then obtained by use of (13) and (5).
(b) The Physical Integral. Im B(o)(s) is evaluated in terms of the s, p

and d partial waves up to 400 MeV. Above 400 MeV contributions from the

three resonances, T = j D 3/2 at 600 MeV, T = J, F$/at 900 MeV and T = 3/2,

F 7/2 at 1350 Mev are estimated from experimental data on total aoss sections

and inelasticity. Smooth background (i.e. non-resonant) terms are also added

so as to fit onto the low energy values at 400 MeV and onto the alternative high

(6) See reference (I) for details of these partial waves.

(7) J. Hamilton, P. Menotti, T. D. Spearman and W. S. Woolcock Nuovo Cimento

20, 519 (1961)
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energy behaviours at 2 BeV, one being set equal to zero above this energy and

the others falling to zero as + 16 it/$ S above 2 BeV.

(c) The Crossed Integral: Here Im B 6 (s) is evaluated using the crossing

relation (13) in a similar marner to that described above for Re B o (s).

Im B (, t) is expressed in terms of the s, p and d waves below 400 MeV

and by the three resonant terms, together with smooth background terms, in

the region between 400 MeV and 2 BeV, enabling Im B(o)(a) to be calculated

for 8 ; S ; 32.7 The behaviour as s --W o is related to the behaviour

(+) (8)of Im B (it, t) at high energies and backward angles )
. Here again there

is considerable uncertainty and two alternative forms for Im B(o (s) are

calculated, one falling linearly to zero and the other remaining constant as

S - 0.

(d) The Born Term. This is evaluated using a value for the coupling constant

2GI, corresponding to Woolcock's value for the pseudovector coupling constant,

f = m8i 9 . The method of calculating the long range crossed Born term is

similar to that described by Hamilton and Spearman 0

(e) Errors: These are of two types corresponding to errors on the low and

high energy data. The errors associated with uncertainties in the high energy

behaviour and also with the behaviour as s-- 0 are hard to estimate, Some

indications as to the form of these errors are provided by the alternative high

energy behaviours considered, These errors, which are estimated to be

(8) J, Hamilton, T. D. Spearman and W. S, Woolcock, Ann. Phys. 17, 1 (1962).

(9) W. S. Woolcock, Proceedings of the Aix - en - Provence International
Conference on Elementary Particles, Vol, I, 459. Also see reference (1),

(10) See appendix of reference (4) for details of the separation of long range
crossed Born terms.
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+ 5 at s = 59.6, are only slowly varying functions of energy and it is especially

important to note that it is very unlikely that they will produce a large

displacement of the values of A(B)(s) for 6132.7 relative to those for
B

S:? 59.6.

The other type of error, due to uncertainties in the low energy

data, has a stronger energy dependence. The physical and crossed integrals

are dominated in this region by the (S,3A) resonance peak and so the main

source of error lies in the values for Re B o (s). It is estimated that these

errors are about + I at the two thresholds, increasing slightly as s increases

to 80 and increasing more rapidly as s decreases below s = 32.7, rising to + 2

at $ = 22. It should be noted that the errors in Re B o (s) will satisfy at

the thresholds, the crossing relation

Error ( s = 59.6) = - Error (s = 32.7)

and that there will be a correlation of approximately this form away from the

thresholds. Thus these errors will tend to displace the values of,&(B)(S)

for SIC 32.7 in the opposite direction to those for s >, 59.6.

3. CONTRIBUTIONS FROM THE CIRCULAR CUT, Isl = M2 - I.

(i) The Absorptive Part on the Circle.

The absorptive part of B(  (s, t) in the channel W+V-ON + N is

given by the helicity amplitude expansion (11)

1W= I, " 7(t) 15)

where 9: "4-I

F-2. M- h
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and f°(t) are the helicity amplitudes. Ignoring those states with J 4

gives

ImB~(s~t) 30v ( st- M1 - )I f()

(S(+)

(16)

This expression then enables the discontinuity of B o (s) across the

circular cut to be calculated for that part of the circle having

| arg (s) I 660, the series expansion (15) diverging beyond this arc.

The contribution to the discrepancy from a given arc around the

front of the circle takes the form

to-) -- t n 2,)
A S) = tm t Komt 1- i:(t

(17)

when t max is related to max, the maximum value of arg (s) by

t . [ M1S-n1(+" /I.>. COS(4-/%)I

The kernel K (s, t) can be calculated exactly (12) giving

(11) W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960).

(12) See M. Marinaro and K. Tanaka, Nuovo Cimento L, 537 (1962) for
details of a similar calculation of the partial wave kernels.
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(ii) Im ;-(t) and the J = 2, T = 01-WT Interaction.

The Omnes method (13) is used to calculate the helicity amplitude

in terms of a J = 2, T = 0 'Wr phase shift o The helicity amplitude

(t) is analytic in the t plane cut from 4 - t - and -0 t < a,

where a = 4 - 1/M 2 , and in addition has the phase g0in the region 4 < t 41b.

Consider the function

uI t~ eyp L(tt )i~: * (19)

0

it being assumed that I(t') falls off sufficiently quickly for the

integral to exist. Then, since u(t) is real for t,4 and has the phase

C0

- %(t) along the cut 4 4 t <co, u (t) • (t) has only the cuts

-004t < a and 16 ,<t-<O.

In the region - 25 t !a, values for Im f.(t) are calculated

in terms of the single nucleon Born term and the IT - N (3/2-,) partial

wave amplitude (14) the results being shown in Fig. 3o The contributions of

the otherlT- N partial waves can be neglected since they are much smaller than

the (3b, 312) term which is itself only 34% of the Born term at t = - 25.

Beyond t = -25 the series expansion of Im f-(t) in terms of U-N partial waves

diverges and values for Im f-(t) cannot be calculated in this region.

Accordingly f(t) is given by

u.(t)) [ J2 L('f ' 1% ', 1
(13) R. Omnes, Nuovo Cimento 8, 316 (1958). Also see reference (14).

(14) W. R. Frazer and J. R. Fulco, Phys. Rev. 117 1603 (1960).
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where the pole term has been added to approximate the contribution of the

region -00<t 4 -25 and where the additional contribution above the

four pion threshold has been neglected.

The values of the pole position and the residue are determined

by fitting (20) and the corresponding derivative relation to values for

Re Ft(o) and 9dt - (01k.S. These constants have been calculatedby the

method of Ball and Wong (15), using forward direction li-N scattering data,

giving the values

Re (o) - O. o o. oob (21)

Re (22)

.f(o) - 0.002(22)

The errors are due primarily to the error on the value of f2 the total

value of the other contributions being only about 2% of the Born term.

In order to calculate values for the helicity amplitude, E(t),

it is convenient to introduce some parametric representation for the phase

S:(t)° A suitable two parameter form having the correct threshold

behaviour and giving a phase which rises to a single maximum and then

falls to zero at high energies is

i 6 (23)

(15) J. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961).
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This then enables u (t) to be evaluated exactly giving

,.- [: 1 [}
e. -C 3 MO(2

In this way Im f 1 Ct) can be calculated in the region t ) 24 for any

values of the parameters a and b. Substitution in (17) then gives the

contribution from the front of the circle to ( (s) for the particular

phase (t) chosen.

24. RESULTS.
(+)

The discrepancy A- B (s) is shown in Fig. 2. The value is only

(+)
about 15% of that of the low energy values for Re B o (s) and it can be

seen that it is a very slowly varying function of energy over the range

22 5 s 80. There is slight curvature near to the two thresholds but

this is very small and can be completely removed by small variations of the

low energy p - wave contributions.

It should first be noted that the discrepancy is well fitted by a

simple pole situated on the left hand cut as can be seen in Fig. 24 (i). Here

the errors shown are only those due to uncertainties in the values of

Re B(o)(s) which have the correlation noted in Sec. 2 (e). In judging this

and subsequent fits it should be remembered that if the values of the

discrepancy in the region $ . 59.6 are increased by changes in the values of
Re Btis s)a then the values in the region s t 32.7 are decreased or vice versa.

In view of certain evidence that the J = 2, T 0 - interaction

may be fairly strong, it is of interest to obtain an upper bound on the phase



shift consistent with this discrepancy. The work of Atkinson gave

values for 0 rising to around 450 at t = 21 while Lovelace and Masson(17)

obtained values rising to 500 + 100 at t = 30. Accordingly, values of

the parameters a and b are chosen so as to give a phase with maximum value

around t = 22 and the contribution of Im f over the front of the

circle calculated. The best fit to the discrepancy is then obtained by

adding a pole term to represent the remaining contributions. The results

are shown in Fig. 4 (ii) where it can be seen that it is impossible to fit

the shape of the discrepancy if the maximum value of the phase, rises

above 13 at t = 22. If the parameters are altered so as to move the peak

out to t = 36 then the maximum valuqf the phase giving an acceptable fit

increases, a maximum value of 180 giving a fit well within the errors. These

different phases are shown in Fig. 5. It should 6e noted that these results

will be insensitive to all but the strangest high energy behaviour since

changes in the discrepancy due to changes in the high energy terms should

only alter the pole terms which have been added to represent the effect of

distant singularities.

It has also been suggested, both theoretically (18) and experimentall? )

0

that the phase,'S1 , may resonate around 1200 MeV. A meaningful calculation

of the contribution of such a phase to the discrepancy is very much more

difficult. A helicity amplitude obtained by solving (20) with a phase which

(16) See reference (2) for details of the phse shift.

(17) C. Lovelace and D. Masson, Proceedings of the 1962 International
Conference on High Energy Physics, CERN, p. 510.

(18) S. D. Drell, ibid. p. 906.

(19) J. Henneny, J.J.Veillet, M.di Corato & P.Negri, ibid. p.603. Also see
J.J.Veillet, J.Hennessy, H.Bingham, M.Block, D.Drigard, A.Lagarrique,
P.Mittner, A.Rousset, G.Bellini, M.Di Corato, E.Fiorrini & P.Negri.
Phys. Rev. Letters 10, 29 (1962).
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is large in the high energy region is subject to large errors due to neglect

of the inelastic contributions and to the increasing importance of the errorsAlso +he"% iuns*rO.t,,0 .. +6 am§+UJe 0 6e 6$SPt ptrt Of e

on the pole position and residue (20 around the circle will occur beyond the

region of convergence of the helicity amplitude expansion.

If such a d wave resonance is sufficiently narrow for the

corresponding helicity amplitude to be neglected in the low energy region it

is possible to approximate Im L(t) by a single &-function. If it is

further assumed that (16) represents an asymptotic expression for the absorptive

part of B(W ), even beyond the region of convergence, then the contribution

of such a C- function approximation over the whole of the circle can be

calculated. The fit using such an approximation, together with a pole to

represent the left hand cut, is shown in Fig. 4 (iii). It can be seen that

the fit is quite good, but it is impossible to say whether the normalisation

constant associated with the &-function is consistent with a resonant phase

or only with a fairly sharp peak in the high energy values of Im ( Ct).

Thus the v- N scattering data is consistent with a J = 2, T = 0

00
P-w phase, :, which does not rise above amaximum value of about 130 at

t = 22 (650 Mev) or 180 at t = 36 (840 MeV). The data is also consistent

with a 9- function contribution at t = 70 (1170 Mev) but the difficulties

involved in solving the Omnes equation at these high energies make it

impossible to say whether the normalisation constant associated with this

- function is consistent with a phase shift having a fairly narrow

resonance or whether it only corresponds to a peak in the absorptive part
I

of the helicity amplitude f_(t).

(20) See L.L.J.Vick, U.C.L. Physics Dept. preprint 1963 for a discussion
of the difficulties associated with solving the Omnes equation at high
energies.
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FIGURE CAPTIONS

Fig. 1. The singularities of the amplitude Bo in the complex s-plane.

Fig. 2. Values for Re B(o) and for the discrepancy d(+)s).
B

The vertical lines indicate the changes in A (+)(s) produced by the different
high energy behaviours.

Fig. 3. Values of Im f (t)- 25- t %a. The broken curve indicates

the Born term contribution.

Fig. 4. Fits to the discrepancy. The vertical lines represent the

estimated errors at threshold due to uncertainties in the low energy data.

(i) represents the fit by a single pole on the left hand cut; (ii) gives
0

the fits for various phase shifts k. (iii) gives the fit for a - function

contribution at t = 70. In comparing the fits it is important to note

the approximate correlation of errors described in Sec. 2 (iv).

Fix. 5. Values of the Aase, , giving acceptable fits to the discrepancy.
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